4 research outputs found

    User Interaction Models for Disambiguation in Programming by Example

    Get PDF
    Programming by Examples (PBE) has the potential to revolutionize end-user programming by enabling end users, most of whom are non-programmers, to create small scripts for automating repetitive tasks. However, examples, though often easy to provide, are an ambiguous specification of the user's intent. Because of that, a key impedance in adoption of PBE systems is the lack of user confidence in the correctness of the program that was synthesized by the system. We present two novel user interaction models that communicate actionable information to the user to help resolve ambiguity in the examples. One of these models allows the user to effectively navigate between the huge set of programs that are consistent with the examples provided by the user. The other model uses active learning to ask directed example-based questions to the user on the test input data over which the user intends to run the synthesized program. Our user studies show that each of these models significantly reduces the number of errors in the performed task without any difference in completion time. Moreover, both models are perceived as useful, and the proactive active-learning based model has a slightly higher preference regarding the users' confidence in the result

    PaLM 2 Technical Report

    Full text link
    We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report

    Antagonists of the EP3 receptor for prostaglandin E2 are novel antiplatelet agents that do not prolong bleeding.

    No full text
    International audienceMyocardial infarction and stroke are caused by blood clots forming over a ruptured or denuded atherosclerotic plaque (atherothrombosis). Production of prostaglandin E(2) (PGE(2)) by an inflamed plaque exacerbates atherothrombosis and may limit the effectiveness of current therapeutics. Platelets express multiple G-protein coupled receptors, including receptors for ADP and PGE(2). ADP can mobilize Ca(2+) and through the P(2)Y(12) receptor can inhibit cAMP production, causing platelet activation and aggregation. Clopidogrel (Plavix), a selective P(2)Y(12) antagonist, prevents platelets from clotting but thereby increases the risk of severe or fatal bleeding. The platelet EP(3) receptor for PGE(2), like the P(2)Y(12) receptor, also inhibits cAMP synthesis. However, unlike ADP, facilitation of platelet aggregation via the PGE(2)/EP(3) pathway is dependent on co-agonists that can mobilize Ca(2+). We used a ligand-based design strategy to develop peri-substituted bicylic acylsulfonamides as potent and selective EP(3) antagonists. We show that DG-041, a selective EP(3) antagonist, inhibits PGE(2) facilitation of platelet aggregation in vitro and ex vivo. PGE(2) can resensitize platelets to agonist even when the P(2)Y(12) receptor has been blocked by clopidogrel, and this can be inhibited by DG-041. Unlike clopidogrel, DG-041 does not affect bleeding time in rats, nor is bleeding time further increased when DG-041 is co-administered with clopidogrel. This indicates that EP(3) antagonists potentially have a superior safety profile compared to P(2)Y(12) antagonists and represent a novel class of antiplatelet agents

    PHOS Technical Design Report

    No full text
    corecore